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ABSTRACT
Both the spatial distribution of organisms and their mode of reproduction have important effects on

the change in allele frequencies within populations. In this article, we study the combined effect of
population structure and the rate of partial selfing of organisms on the efficiency of selection against
recurrent deleterious mutations. Assuming an island model of population structure and weak selection,
we express the mutation load, the within- and between-deme inbreeding depression, and heterosis as
functions of the frequency of deleterious mutants in the metapopulation; we then use a diffusion model
to calculate an expression for the equilibrium probability distribution of this frequency of deleterious
mutants. This allows us to derive approximations for the average mutant frequency, mutation load,
inbreeding depression, and heterosis, the simplest ones being Equations 35–39 in the text. We find that
population structure can help to purge recessive deleterious mutations and reduce the load for some
parameter values (in particular when the dominance coefficient of these mutations is �0.2–0.3), but that
this effect is reversed when the selfing rate is above a given value. Conversely, within-deme inbreeding
depression always decreases, while heterosis always increases, with the degree of population subdivision,
for all selfing rates.

THE reproductive system of organisms greatly affects complete selfing or complete outcrossing (Lande and
the change in genotype frequencies within popula- Schemske 1985; Charlesworth et al. 1990). Intermedi-

tions, which may in return influence the evolution of the ate rates of self-fertilization, however, are commonly
reproductive biology of a species. Recessive deleterious observed in plants (Schemske and Lande 1985), and
mutations, for example, are likely to play an important various hypotheses have been proposed to explain this,
role in the evolution of self-fertilization. Although the on the basis of different dispersal abilities of selfed and
average frequency of such mutations in a population outcrossed progeny (Holsinger 1986), pollination
decreases as the rate of selfing increases, they cause a ecology (Johnston 1998), variations in inbreeding de-
reduction in fitness of selfed progeny relative to out- pression across space and time (Cheptou and Mathias
crossed progeny. This inbreeding depression may be 2001; Cheptou and Schoen 2002), or population spa-
sufficient in some cases to prevent higher rates of selfing tial structure (Ronfort and Couvet 1995). This last
to evolve. Direct advantages, however, may be associated study assumed “mass-action pollination” (competition
with selfing: if the proportion of male gametes used by between self and outcross pollen to pollinate the
an individual for self-fertilization is negligible, a selfer ovules), which may also explain in part the evolution
should enjoy a 50% reproductive advantage in a com- of intermediate selfing rates (Uyenoyama et al. 1993,
pletely outcrossing population (the “cost of outcross- p. 340).
ing”) and rapidly spread to fixation in the absence of By changing the relative importance of natural selec-
other factors. From such considerations, it has been tion and genetic drift on allele frequency variations,
argued that increased levels of selfing should be selected population structure affects the equilibrium frequency
if inbreeding depression is lower than the cost of out- of deleterious mutations and the magnitude of inbreed-
crossing, while selfing should decrease otherwise (Lande ing depression. One can define different forms of in-
and Schemske 1985). Since inbreeding depression is a breeding depression in a subdivided population; in this
decreasing function of the selfing rate, the only possible article we define “within-deme inbreeding depression”
evolutionary stable equilibria should correspond to (�IS) as the reduction in fitness of selfed progeny relative

to outcrossed progeny from the same deme and “be-
tween-deme inbreeding depression” (�IT) as the reduc-

1Corresponding author: Génétique et Evolution des Maladies Infecti- tion in fitness of selfed progeny relative to progeny
euses, UMR CNRS-IRD 2724, Institut de Recherche pour le Développe- obtained by outcrossing randomly over the whole meta-ment, 911 Ave. Agropolis, BP 64501, 34394 Montpellier Cedex 5,
France. E-mail : roze@mpl.ird.fr population. We also define heterosis (�ST) as the reduc-
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tion in fitness of progeny obtained by outcrossing within according to an island model. The model assumes a
large (but finite) number of demes and weak selection;demes relative to that of progeny obtained by outcross-

ing randomly over the whole metapopulation. To have deme size and migration rate can be arbitrarily large
or small, as long as the selection coefficient is smallera better understanding of the role of population struc-

ture in the evolution of mating systems, the combined than m � 1/N, where m is the migration rate and N is
the number of adult individuals per deme. Althougheffects of self-fertilization and population structure on

selection against deleterious mutants need to be eluci- we assume that migration occurs only in the diploid
phase, the model could be easily extended to includedated. For island models of population structure, Wright

(1937) obtained an expression for the equilibrium dis- gametic migration. As in Theodorou and Couvet (2002),
Whitlock (2002), and Glémin et al. (2003), we con-tribution of allele frequencies across demes, assuming

that frequencies change slowly within each deme (that sider a one locus-two alleles model. Whether results
from such models can be easily extended to situationsis, for sufficiently weak selection, mutation and migra-

tion, and large deme size); Whitlock (2002) used this with several selected loci remains questionable, since
both partial selfing and population structure introducedistribution to obtain approximations for the frequency

of deleterious mutations, the mutation load, and in- statistical associations among loci (Weir and Cocker-
ham 1973; Vitalis and Couvet 2001). In the case ofbreeding depression in a population subdivided into a

very large number of demes (deterministic equilib- nonsubdivided populations, however, Charlesworth et
al. (1990) have shown that the effect of these associa-rium). He found that population structure can substan-

tially reduce within-deme inbreeding depression (due tions on inbreeding depression is negligible as long
as selection is weak at each locus. These results wereto increased drift within subpopulations), while it can

increase or decrease the frequency of deleterious mu- obtained from a model of unlinked loci, but Charles-
worth et al. (1992) showed that the rate of recombina-tants and the mutation load, depending on the parame-

ter values, dominance in particular. He also considered tion between selected loci has only a small effect on the
mutation load and inbreeding depression, at least underthe effects of inbreeding, by introducing the inbreeding

coefficient FIS to measure heterozygote deficits within weak selection. Epistasis, however, will affect mutation
load and inbreeding depression (Charlesworth et al.demes, and found that the mutation load decreases as FIS

increases. Theodorou and Couvet (2002) presented 1991).
First, we introduce some methodology developed byresults relative to an island model of population struc-

ture with an infinite number of demes, obtained by other authors to study the effects of self-fertilization
on the mean frequency of deleterious alleles, mutationsolving numerically a system of recurrence equations.

They considered the case of partially selfing individuals load, and inbreeding depression in finite nonsubdi-
vided populations; we also give approximations for theand separated pollen from seed migration. They found,

among other results, that population structure has al- case of very large populations (deterministic solutions).
Second, we then extend these models to the case ofmost no effect on within-deme inbreeding depression

when the selfing rate is high and that the mutation structured populations. We define measures of within-
deme inbreeding depression, between-deme inbreed-load is higher under pollen migration than under seed

migration. In a recent article, Glémin et al. (2003) de- ing depression, and heterosis and derive simple rela-
tions between these quantities; we then use a diffusionrived approximations for the mutation load, inbreeding

depression, and heterosis in a structured population, model to calculate their expected values. In the general
case, these values are obtained by numerical integrationconsidering both the island model and the one-dimen-

sional stepping-stone model of population structure. of a complicated function; in some cases, however, they
can be approximated by deterministic solutions. UnderThey assumed that deleterious alleles remain at a low

frequency within each deme and that they are present weak migration and large deme size, these deterministic
solutions are equivalent to the ones obtained by Whit-only in the heterozygous stage, which implies that selec-

tion is strong relative to drift within demes, and deleteri- lock (2002) in his soft selection model; as we do not
make any assumption on migration rate and deme size,ous mutations are not too recessive. They found that

population structure decreases within-deme inbreeding however, we can obtain precise solutions for arbitrarily
large migration rates and/or small deme sizes. We showdepression, while it increases between-deme inbreeding

depression and heterosis. As in Whitlock (2002), they that the effects of population structure on the frequency
of deleterious mutations and the mutation load dependintroduced the inbreeding coefficient FIS to measure

heterozygote deficits within demes and showed that in- critically on the dominance coefficient of these muta-
tions and on the rate of partial selfing in the population.creasing FIS reduces within- and between-deme inbreed-

ing depression, as well as heterosis. In particular, we show that population structure can
have different qualitative effects on these quantities de-In this article, we use a diffusion model to calculate

the average frequency of deleterious alleles, the muta- pending on the selfing rate, a result that, to our knowl-
edge, has not been shown before. Finally, we comparetion load, inbreeding depression, and heterosis in a

population of partially selfing individuals, subdivided the solutions of Glémin et al. (2003) and our solutions
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with simulation results and find that the solutions of giving
Glémin et al. are more accurate than ours when selection
is stronger than migration (s � m) and the dominance � � s

1 � 2h
2 � �

pq � o(s). (4)
coefficient of deleterious mutations is not small, while
our method is more accurate in the opposite cases (s � In a population of finite size, at equilibrium, allele A
m and/or low dominance coefficient). will be in frequency p with a given probability φ(p). To

obtain the mean load and inbreeding depression at
equilibrium, one has to replace p and pq in EquationsNONSUBDIVIDED POPULATION
2 and 4 by �p φ(p)dp and �pq φ(p)dp. An approximation

We assume that two alleles A and a at a given locus for φ(p) can be obtained from diffusion methods: as-
segregate in a population of N monoecious individuals. suming that N is large and that s, u, and v are small
We call p the frequency of A, and q � 1 � p the frequency (of order 1/N), the change in frequency of A over
of a. At the beginning of each generation, each of the generations can be approximated by a diffusion process,
N adults produces a very large number of gametes and with drift and diffusion coefficients
dies; we assume that allele A has a deleterious effect,

M�p � S1pq � S2p 2q � uq � vp (5)such that aa, Aa, and AA individuals produce a number
of gametes proportional to 1, 1 � hs, and 1 � s, respec-

V�p �
pq

2Ne

(6)tively. Self-fertilization occurs at a rate � ; more precisely,
a proportion � of fertilizations involve two gametes pro-

(Caballero and Hill 1992) withduced by the same individual, while the other 1 � �
involve two gametes taken at random among all gametes S1 � �s[h � (1 � h) F], S2 � �s(1 � 2h)(1 � F ),
produced (therefore when � � 0 self-fertilization occurs
at rate 1/N). Finally, N individuals are sampled ran- Ne �

N
1 � F

. (7)
domly among the large number of juveniles produced
to form the next adult generation. At each generation,

M�p and V�p measure the mean and variance of themutation from a to A occurs at rate u, while mutation
change in frequency of A over one generation; φ(p) isfrom A to a occurs at rate v.
expressed as a function of these two quantities by theThe mutation load L is defined as the reduction in
relationmean fitness of a population due to the constant input

of deleterious mutations (Crow 1970). Calling paa , pAa ,
φ(p) �

K
V�p

exp��2M�p

V�p

dp� (8)and pAA the frequencies of the three genotypes in the
population, we have

(e.g., Ewens 1979), where K is a constant such that
L � 1 � [paa � (1 � hs)pAa � (1 � s)pAA] probabilities sum to one. This gives

� hspAa � spAA. (1) φ(p) � K exp[4NeS1p � 2Ne S2 p2]p4Neu�1q 4Nev�1. (9)
Genotypic frequencies are expressed as functions of p,

This distribution has to be integrated numerically to
the frequency of allele A, by the relations paa � q 2 �

obtain its first two moments and the average values of
Fpq, pAa � 2(1 � F)pq, and pAA � p 2 � Fpq, where F is

the mutation load and inbreeding depression. This was
the correlation between uniting gametes due to nonran-

done by Bataillon and Kirkpatrick (2000), who
dom mating (Wright’s F IS). Although F depends on the

showed in particular that the mean load is a decreasing
selection coefficient, it is sufficient to evaluate it in the

function of population size, while the mean inbreeding
neutral case to obtain an expression of the load to the

depression increases with population size, these effects
first order in s; under neutrality and with a rate of selfing

being marked mostly when population size is small.
�, F � �/(2 � �) (e.g., Gillespie 1998, p. 93). This

Some insights can be gained by considering the values
gives an expression of the load as a function of p :

of p, L, and � in the limit as population size tends to
infinity (deterministic equilibrium); these values can be

L � sp � 2s(1 � 2h)
1 � �

2 � �
pq � o(s). (2) obtained simply by solving M�p � 0 for p and injecting

this equilibrium value of p in Equations 2 and 4. Simpler
Inbreeding depression, � , is defined as the reduction expressions are obtained by neglecting back mutation

in fitness of an individual produced by selfing, relative (v � 0); one may also neglect terms in p 2, at least when
to the fitness of an individual produced by outcrossing h � 0, while when h � 0 these terms have to be con-
(Charlesworth and Charlesworth 1987), which served. This leads to different solutions for the cases
gives h � 0 and h � 0; these solutions are given in Table 1

for � � 0 (no self-fertilization), and � � 0. From the
� � 1 �

paa � [1⁄4 � 1⁄2(1 � hs) � 1⁄4(1 � s)]pAa � (1 � s)pAA

q 2 � 2(1 � hs)pq � (1 � s)p 2
,

expressions given in Table 1, one finds easily that self-
fertilization decreases the frequency of deleterious mu-(3)
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TABLE 1 Mutation load, inbreeding depression, and heterosis:
We call paai , pAai , and pAAi the frequencies of the threeDeterministic values for the frequency of a deleterious
genotypes in deme i. Given all demes have the sameallele (p), the mutation load (L), and inbreeding
size N, the mutation load is given by the expressiondepression (�) in a nonsubdivided population

L � hspAai � spAAi , (10)
� � 0 � � 0

where the overbar means the average over all demes.p
To obtain the average load in the population at equilib-

h � 0 √u/s
X � �s

4(1 � �)s rium, pAai and pAAi have to be integrated over a probability
distribution 	(p), where p is a vector representing all

h � 0
u
hs

(2 � �)u
[2h � �(1 � 2h)]s genotypic frequencies in all demes, and 	(p) gives the

probability that these frequencies equal p at equilib-
L rium. In the following we use a diffusion model to ap-

h � 0 u u
proximate these values; previous studies have shown

h � 0 2u u
4h � �(1 � 4h)
2h � �(1 � 2h) that diffusion approximations can be used to describe

the change in allele frequency in an island model with
� increasing accuracy as increasingly accurate methods

h � 0
u
2

(√s/u � 1)
X � �s � 4u(1 � �)

8(1 � �)2 are used to compute the drift and diffusion coefficients
(Maruyama 1983; Cherry and Wakeley 2003; Roze
and Rousset 2003; Wakeley 2003; Whitlock 2003).h � 0 u� 1

2h
� 1� u(1 � 2h)

2h � �(1 � 2h) The approximations obtained are accurate as long as
the number of demes n is large and the migration rate

� measures the rate of selfing, X � √�2s 2 � 8(1 � �)(2 � �)us. is not too small (approximately m � s). These approxi-Here h � 0 really means “h significantly greater than 0,” as there
mations are obtained by considering limit processesis a discontinuity between the expressions for h � 0 and h � 0.
when s, u, and v are of order 1/n, so that when s tendsThis is in contrast to the case with � (substituting 0 for � in the

expressions on the right yields the expressions on the left). to zero, n tends to infinity, and u and v tend to zero; it
is assumed that the products ns, nu, and nv tend to
finite values in this limit.

tants and the mutation load as long as 0 � h � 1 and To obtain an expression of the load to the first order
decreases inbreeding depression as long as 0 
 h � 1⁄2. in s, Equation 10 shows that it is sufficient to calculate the
One can also see that while the load depends only on average over 	 of pAai and pAAi in the limit when s tends
u under random mating, it also depends on h and � to zero. In this limit, pAai and pAAi can be expressed as
when self-fertilization occurs (Ohta and Cockerham functions of p, the frequency of A in the whole meta-
1974). population (Roze and Rousset 2003). Indeed as s tends

to zero and n tends to infinity, the ancestral lineages of
the two homologous genes of an individual can eitherPOPULATION SUBDIVISION
stay in the same deme and coalesce (with a probability

We now turn to the case of a subdivided population. that we call r 0) or migrate to different demes (with
We assume an island model of population structure, probability 1 � r 0), in which case they will take an infi-
where n is the number of demes and N the number of nite time to coalesce. As s tends to zero and n tends to
adult individuals per deme. Adult individuals produce infinity, the frequency of A in the whole population does
a large number of gametes, still in relative proportions not change over the (finite) coalescence time within
1, 1 � hs, and 1 � s depending on their genotype. demes; therefore the probability that the two homolo-
Fertilization occurs within each deme with a rate � of gous genes of an individual are A, averaged over all
selfing, and the juveniles produced migrate at a rate m. individuals, can be written
We distinguish soft and hard selection as follows: under

pAAi � r 0p � (1 � r 0)p 2 � O(s)soft selection, the number of juveniles per deme is regu-
lated to a constant value (the same for all demes) just � p 2 � r 0 pq � O(s) (11)
before migration, while under hard selection there is

and the same reasoning givesno such regulation, and thus the number of juveniles
produced by a deme at the time of migration depends pAai � 2(1 � r0)pq � O(s). (12)
on the genotypes of the parents that were in that deme
(Christiansen 1975, Equation 1; Nagylaki 1992, p. r0 measures deviations of genotype frequencies relative to

expectations based on random union of gametes in the134); other definitions of soft and hard selection exist in
the literature (Wallace 1975; Whitlock 2002). Finally, metapopulation; it is therefore equivalent to Wright’s F IT.

Since pAai and pAAi can be expressed as functions of ponce migration has occurred, N individuals are sampled
in each deme to form the next adult generation. and r0 , we just need the value of r0 and the probability
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distribution of p at equilibrium, still in the diffusion Calling r1 the probability that the ancestral lineages of
limit (n tends to infinity; s, u, and v tend to zero), instead two genes sampled in two different individuals from the
of the whole distribution of frequencies in the different same deme coalesce, in the limit as n tends to infinity
demes. As in the previous section, we call φ(p) this distri- and s, u, and v tend to zero, we have the relation
bution; from Equations 10, 11, and 12, the mean load
at equilibrium, to first order in s, is the average over φ r R

1 �
1

2N
�

r0

2N
� �1 �

1
N �r1 . (19)

of

L � sp � s(1 � 2h)(1 � r0)pq � o(s). (13) r1 is equivalent to other common definitions of F ST.
Equations 11, 12, and 16–19 giveInbreeding depression in a structured population

may be defined in several ways (Johnston and Schoen
�IS �

1
2

s(1 � 2h)(1 � r0 � 2rR
1)pq � o(s)1994; Theodorou and Couvet 2002; Whitlock 2002).

In the following we call fsi the mean fecundity of individ-
uals produced by selfing in deme i, foi the mean fecundity

�
1
2

s(1 � 2h)�1 �
1
N�(1 � r0 � 2r 1)pq � o(s). (20)of individuals produced by outcrossing in deme i (mean-

ing that both parental gametes are sampled randomly
from deme i), and fb the mean fecundity of individuals Similarly, one arrives at
produced by outcrossing over the whole metapopula-
tion. Within-deme inbreeding depression �IS is defined

�IT �
1
2

s(1 � 2h)(1 � r0)pq � o(s) (21)
as �IS � 1 � fsi/foi (where the overbar means the average
over all demes), between-deme inbreeding depression

�ST � s(1 � 2h)r R
1pq � o(s). (22)�IT as �IT � 1 � fsi/ fb, and heterosis �ST as �ST � 1 �

foi/fb. �IT actually combines the effects of within-deme The expressions above imply that
inbreeding depression and heterosis; to the first order
in s, we have �IS

�IT

� 1 � �,
�ST

�IT

� �, (23)
1 � �IT � (1 � �IS)(1 � �ST). (14)

This relation is exact in Theodorou and Couvet (2002), where � � 2r R
1/(1 � r0) is the “relatedness coefficient”

as they define �IS as 1 � fsi/ foi (i.e., from the ratio of in an island model (Michod and Hamilton 1980; Roze
average f ’s rather than from the average ratio); it is and Rousset 2003). Again, the average values of �IS, �IT,
exact to the first order in s only with the definition we and �ST are obtained by integrating these expressions
use. �IS and �IT correspond to �1 and �2 in Whitlock over φ.
(2002). Probability distribution of the frequency of A at equi-

One can use the same reasoning as above to express librium: To calculate φ in the diffusion limit we can use
�IS, �IT, and �ST as functions of p. For example, �IS is the Equation 8, where M�p and V�p still represent the mean
average over i of and variance in the change in frequency of A over one

generation. M�p and V�p can be expressed as functions
1 �

1 � s(1 � 2h)pAai/4 � spAAi

1 � 2hspiqi � sp 2
i

, (15) of p and of several variables measuring various probabili-
ties of coalescence, which have to be evaluated in the

where pi is the frequency of A in deme i. This gives limit as n tends to infinity and s, u, and v tend to zero
(Roze and Rousset 2003). We have already defined r0

as the probability of coalescence of the two homologous�IS �
1
4

s[(1 � 2h)pAai � 4pAAi � 8hpiqi � 4p2
i ] � o(s).

genes of an individual and r1 as the probability of coales-
(16) cence of two genes sampled in two different individuals

from the same deme; we now define a as the probabilityIn the limit as s, u, and v tend to zero and n tends to
that the ancestral lineages of the two homologous genesinfinity, piqi and p2

i can be expressed as functions of p
of an individual, plus a third gene sampled in a differentand a new variable rR

1, which measures the probability
individual from the same deme, all stay in the sameof coalescence within their deme of the ancestral lin-
deme and coalesce, and c as the probability that theseeages of two genes sampled with replacement from the
three lineages separate into different demes before anysame deme, still in the diffusion limit (Roze and Rous-
two of them coalesce. r0, r1, a, and c correspond to r D

0 ,set 2003):
r D

1 , aD, and cD in Roze and Rousset (2003). Under soft
p2

i � p 2 � r R
1pq � O(s) (17) selection, the mean change in frequency of A over a

generation takes the formpiqi � (1 � r R
1)pq � O(s). (18)

r R
1 is equivalent to Wright’s original definition of F ST. M�p � S1pq � S2p 2q � uq � vp (24)
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(Roze and Rousset 2003), with
r0 � 1 � 2�M

1 � 2(2 � �)M
, r1 � 1

1 � 2(2 � �)M
, (31)

S1 � �s �1 �
1
N �[h(1 � r0 � 2r1) � (1 � 2h)(r0 � a)]

a � 1 � �M
[1 � 2(2 � �)M][1 � (2 � �)M]

,
(25)

and
c � 4(1 � �)(2 � �)M 2

[1 � 2(2 � �)M][1 � (2 � �)M]
. (32)

S2 � �s �1 �
1
N �(1 � 2h)c, (26)

For large m and/or small N, however, the exact expres-
sions obtained by solving the equations given in appen-

while the variance in the change in frequency of A is dix a have to be used.
given by The expressions of M�p and V�p under our life cycle—

Equations 24 and 27—take the same form as for a pan-
V�p �

pq
2Ne

(27) mictic population—Equations 5 and 6. Therefore, at
equilibrium, the probability that allele A is present in

with frequency p in the metapopulation, φ(p), is still given
by Equation 9,

Ne �
nN

2(1 � r1) � (1 � r0)
. (28) φ(p) � K exp[4NeS1p � 2NeS2p 2]p4Neu�1q4Nev�1,

now using the expression of Ne given by Equation 28Under hard selection, S1 and S2 become
and the expressions of S1 and S2 given by Equations 25
and 26 for soft selection or those by Equations 29 andS1 � �s�1 �

(1 � m)2

N �[h(1 � r0 � 2r1 ) � (1 � 2h)(r0 � a)]
30 for hard selection. Again, the averages of p and pq
over this probability distribution have to be obtained�s[1 � (1 � m)2][2hr1 � (1 � 2h)a] (29)
by numerical integration.

S2 � �s�1 �
(1 � m)2

N �(1 � 2h)c

RESULTS
� s[1 � (1 � m)2](1 � 2h)(1 � r0 � c). (30)

Approximate solutions
When m � 1, r1 � 0 and the expressions of Ne , S1 ,

Although we could not find any exact solution forand S2 under hard selection take the same form as in
the mean of p and pq over a probability distribution ofEquation 7 (nonsubdivided population), with F being
the form of Equation 9, some approximations can bereplaced by r0. If m is small, assuming either hard or
obtained, as explained in appendix b. A first approxima-soft selection does not make much difference, as long
tion, valid when h � �0.3, or when h � 0.3 and m isas N is not small.
small (see discussion at the end of appendix b for morer0 , r1 , a, and c have been defined as probabilities of
details), iscoalescence, which have to be computed in the limit as

the number of demes tends to infinity, and when s, u,
p � pq � �

u
S1

. (33)and v equal zero. These probabilities are obtained by
writing recurrence equations and calculating equilib-

This approximation also corresponds to the determinis-rium values; these recurrence equations are given in
tic solution (very large number of demes), obtainedappendix a. In Roze and Rousset (2003) we also con-
after neglecting terms in p 2. When h � 0.3, a bettersidered self-fertilization, but � was not defined exactly
approximation isas in this article: it was the probability that two uniting

gametes came from the same parent, so that when �
p � pq � �

u
S1

(4Neu � 1)(4Neu � 2) � T
4Neu(4Neu � 1) � T

(34)was zero all uniting gametes came from different par-
ents; here when � equals zero, two uniting gametes
come from the same parent with probability 1/N; the (from appendix b), where T � 8NeS 2

1/S2. In (33) and
(34), Ne is given by Equation 28, while S1 and S2 arepresent definition appears more frequently in the litera-

ture and proves more convenient to study the evolution given by (25) and (26) if selection is soft and by (29)
and (30) if selection is hard. Another aproximation forof self-fertilization. For this reason, the recurrence equa-

tions given in appendix a are not exactly the same as the case h � 0 and m not too small is given in appendix
b, Equation B11.those in Roze and Rousset (2003). The expressions of

a and c are complicated, but simpler expressions can Figure 1 compares these approximations with numeri-
cal integrations using the NIntegrate function of Mathe-be obtained if we assume that N is large and m small—we

assume that m is of order 1/N and neglect terms in matica 4.1 (Wolfram 1991). When h � 0, (33) and
(34) give good results only for small values of m; as hO(m). Under these conditions we obtain (with M � Nm):
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Figure 1.—Average frequency of allele A (left) and within-deme inbreeding depression (right) in a subdivided population
under hard selection, relative to the frequency of A and the inbreeding depression in a nonsubdivided population of the same
total size, as a function of the migration rate (x-axis) and the dominance coefficient. Parameter values are n � 200, N � 100,
s � 0.01, � � 0, u � 2 � 10�5, v � 10�6; top, h � 0; middle, h � 0.1; bottom, h � 0.3. p and pq were obtained by numerical
integration over the φ distribution (thick solid lines), using approximation (33) (dashed lines), approximation (34) (dashed/
dotted lines), or approximation (B11) (thin solid lines). The dotted lines correspond to approximations (35) and (37).

increases, the range over which they are accurate in- Finally, we observed that the expression of the mutation
load obtained from equations (13) and (33) gives goodcreases, (34) giving better results than (33), while when

h � 0.3, (33) gives good results for all values of m. Figure results for all values of h, even when h � 0 and m is
large (not shown).1 corresponds to the case of random mating within

demes (� � 0). We observed that the accuracy of approx- Approximations (33) and (34) are complicated func-
tions of the parameters, as they depend on r0 , r1 , a, andimations (33) and (34) increases as the selfing rate �

increases; approximation (B11), however, gives good c, which are the solutions of the equations given in
appendix a. When m is small and N large, however,results only for small values of � (results not shown).
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Figure 2.—(A) Average frequency of allele A in a subdivided population under hard selection, relative to its average frequency
in a nonsubdivided population of the same total size, as a function of the migration rate (x-axis) and the dominance coefficient.
Parameter values are n � 100; N � 30; s � 0.01; u � 10�5; v � 10�6; � � 0; and h � 0, 0.05, 0.1, 0.2, 0.3, 0.5, and 1 from bottom
to top. (B) Absolute average frequency of A for the same parameter values, h � 0, 0.05, 0.1, 0.2, 0.3, 0.5, and 1 from top to
bottom.

these solutions can be approximated by Equations 31 nonsubdivided population of the same total size; this
comes from the fact that even when m � 1, populationand 32, which leads to a simple expression for S1 . In

that case, using (33) leads to (for both hard and soft structure still has the effect of increasing the probability
of self-fertilization, as we assume that fertilization occursselection)
within demes before migration. This effect becomes

p �
u[1 � (2 � �)Nm][1 � 2(2 � �)Nm]

2Nms[1 � (2 � �)(2h � �(1 � 2h))Nm]
(35) negligible when deme size is large. For all parameter

values that we tested, we found that reducing the migra-
tion rate up to a given point reduces the frequency ofL �

u[1 � (2 � �)Nm][1 � 2(4h � �(1 � 4h))Nm]
2Nm[1 � (2 � �)(2h � �(1 � 2h))Nm]

(36)
deleterious mutants when h � �1⁄3, and increases it when
h � �1⁄3, which corresponds to what Whitlock (2002)

�IS �
u(1 � 2h)[1 � (2 � �)Nm]

1 � (2 � �)[2h � �(1 � 2h)]Nm
(37) had found in his soft-selection model. For small values

of the migration rate, however, the frequency of delete-
rious mutants increases as m decreases, for all values�IT � �1 �

1
2Nm��IS (38)

of h, as can be seen on the left of Figure 2A. Indeed
population structure has different effects on the selec-

�ST �
1

2Nm
�IS . (39) tion against deleterious alleles: it increases homozygos-

ity, which helps to purge recessive deleterious alleles,
Equations 35 and 36 can also be obtained from Whit- but it also decreases the efficiency of selection, by in-
lock’s (2002) expressions for the mutant frequency and creasing the genetic similarity among competing indi-
mutation load in an infinite-island model under soft viduals. When migration is very weak, demes are almost
selection (Equations 43, 44, and 46 in Whitlock 2002, always fixed for a or A and selection has little effect;
with b � 0). Under hard selection we still obtain Equa- this explains why the curves go up on the left of Fig-
tions 35–37 while Whitlock finds different results; this ure 2A.
comes from the fact that our definition of hard selection Figure 3 shows that decreasing N increases the value
is different from that in Whitlock (2002; see Roze and of m that minimizes the mean frequency of recessive
Rousset 2003). deleterious mutations. The deterministic approxima-

tion (35) predicts that the frequency of A should de-
crease when Nm decreases up toQuantitative patterns

Effects of population structure: Figure 2 shows the 2h � √2(1 � h)(1 � 2h)
4 � 12h

. (40)average frequency of the deleterious allele A as a func-
tion of the migration rate m, under hard selection (re-

If Nm is lower than this limit value, the frequency of Asults under soft selection are qualitatively very similar),
increases as Nm decreases. Although Equation 35 nowhen � � 0. Here we integrated numerically over the
longer predicts very well the mean frequency of A whendistribution given by Equation 9, with Ne , S1 , and S2

N is small and/or m is large, we found that Equationgiven by Equations 28–30, and r0 , r1 , a, and c calculated
40 usually gives correct predictions of the position offrom the recurrence equations given in appendix a.
the minimum. Equation 40 simplifies to Nm � 1/(2√2) �One can see from Figure 2A that the mutation-selection

balance when m � 1 is not exactly the same as in a 0.35 when h � 0, and Nm � 1⁄2 when h � 0.1; it also
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when selection is moderate to strong. When the number
of demes is not very large, population structure only
very weakly reduces the load (and only for 0 � h � 1⁄4),
while for small values of m the load still increases rapidly
as m decreases (Figure 4, left).

When h � 1⁄2, population structure always decreases
within-deme inbreeding depression (�IS) as illustrated
by Figure 5A and always increases heterosis (�ST; not
shown). Between-deme inbreeding depression (�IT) can
increase or decrease with the migration rate, depending
on the value of h, as can be seen in Figure 5B. When
m is small, however, �IT always increases as m decreases,
for all values of h. From the deterministic approximation

Figure 3.—Average frequency of allele A in a subdivided (38), one finds that �IT has a minimum when Nm equals
population under hard selection, relative to its average fre-
quency in a nonsubdivided population of the same total size, 1

2(1 � 4h)
, (42)as a function of the migration rate (x-axis) and deme size.

Solid line, n � 30, N � 100; dashed line, n � 100, N � 30;
dotted line, n � 300, N � 10. Other parameters are s � 0.005, indicating that when h � 1⁄4, �IT should always increaseh � 0, u � 10�5, v � 10�6, and � � 0. Simulation results are

as Nm decreases; this corresponds to what we observedsquares, n � 30, N � 100; open circles, n � 100, N � 30; solid
for most parameter values after numerical integrationcircles, n � 300, N � 10.
over the φ distribution.

Selfing and population structure: We observed that,
shows that the frequency of A always increases as Nm as in an undivided population, self-fertilization de-
decreases for h � 1⁄3. creases the average frequency of the deleterious A allele,

The effect of population structure on the mutation for 0 
 h 
 1 (results not shown). This purging effect
load is illustrated in Figure 4; when h � 0 but � �1⁄4, of selfing is greatest for recessive mutations (h equal
decreasing m has a nonmonotonic effect on the load or close to zero). Moreover, the effect of population
(the load first decreases and then increases), while when structure on the average frequency of A depends on
h � 0 or � �1⁄4, decreasing m always increases the load. the selfing rate �. We have seen in the previous section
When h is between 0 and 1⁄4, an approximation for the that, without selfing, population structure decreases the
value of Nm that minimizes the load can be obtained frequency of A when h � �1⁄3 (as long as Nm is not too
from the deterministic approximation (36): the load small); selfing decreases this purging effect of popula-
should be minimal when Nm equals tion structure and can even reverse it if � is high. This

is illustrated by Figure 6, which, like the previous figures,2h � √2h(1 � 2h)
4h(1 � 4h)

. (41) was obtained by numerical integration over the φ distri-
bution, without making any assumption on N and m.
From the deterministic approximation (35), one pre-For the parameter range that we have tested, we found
dicts that for values of � � 2⁄3, population structurethat population structure can decrease the load substan-

tially only when the number of demes is very large or should always increase the frequency of A, for all values

Figure 4.—(A) Mutation load in a subdivided population under hard selection, relative to the load in a nonsubdivided
population of the same total size, as a function of the migration rate (x-axis) and the dominance coefficient. Parameter values
are n � 100; N � 30; s � 0.1; u � 10�5; v � 10�6; � � 0; and h � 0 (solid line), 0.05 (dashes), 0.1 (dashes/dots), 0.2 (dashes/
double dots), and 0.3 (dots). (B) Absolute load, same parameter values.
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Figure 5.—(A) Within-deme inbreeding depression (�IS) in a subdivided population under hard selection, relative to the
inbreeding depression in a nonsubdivided population of the same total size, as a function of the migration rate (x-axis) and the
dominance coefficient. Parameter values are n � 100; N � 30; s � 0.01; u � 10�5; v � 10�6; � � 0; and h � 0, 0.05, 0.1, 0.2,
and 0.3 from bottom to top. (B) Between-deme inbreeding depression (�IT) for the same parameter values, h � 0, 0.05, 0.1, 0.2,
and 0.3 from bottom to top.

of h ; this corresponds to what we observed for most otonic effect of � for small h may be due to the fact
that selfing increases the efficiency of selection againstparameter values. Note that Figure 6 represents the

mutant average frequency in a subdivided population, recessive mutations (by increasing homozygosity), but
also increases the effects of drift within demes, sincerelative to its average frequency in a nonsubdivided pop-

ulation of the same total size; as both depend on �, one selfing decreases Ne in finite populations.
We have seen that, without selfing, population subdivi-cannot deduce from the figure what is the absolute

effect of � on the average mutant frequency (again, sion decreases the mutation load when h � 0 but � �1⁄4,
if the number of demes is very large or if selection isthis effect is to decrease the mutant frequency, for all

parameter values). The same is true for Figures 7 and 8. moderate to strong. This effect is attenuated by a low
rate of selfing, as shown by Figure 7, and is reversedWhen h is significantly greater than zero, selfing re-

duces the mutation load in nonsubdivided populations when the rate of selfing is moderate to strong. When
h � 0 or �1⁄4, decreasing Nm always increases the load,(Table 1); we observed the same effect in structured

populations (not shown). When h is equal or close to for all values of �. Overall, we observed that, when � �
�0.2, population structure always increases the muta-zero, however, selfing does not affect the load in large

nonsubdivided populations (L � u), while in structured tion load, for all values of h. Calculations from the deter-
ministic approximation (36) lead to a similar result.populations the load is minimal for an intermediate

value of � ; this can be seen from Equation 36 and is Finally, we found that self-fertilization always de-
creases �IS, �IT, and �ST when 0 
 h 
 1⁄2. Selfing doesalso observed in simulations (not shown). This nonmon-

Figure 6.—Average frequency of allele A in a subdivided Figure 7.—Mutation load in a subdivided population under
hard selection, relative to the load in a nonsubdivided popula-population under hard selection, relative to its average fre-

quency in a nonsubdivided population of the same total size, tion of the same total size, as a function of the migration rate
(x-axis) and the selfing rate. Parameter values are n � 100;as a function of the migration rate (x-axis) and the selfing

rate. Parameter values are n � 100; N � 30; s � 0.01; u � N � 30; s � 0.1; u � 10�5; v � 10�6; h � 0.05; and � � 0,
0.02, 0.05, 0.1, 0.2, and 1 (from bottom to top). Simulation10�5; v � 10�6; h � 0; and � � 0, 0.1, 0.2, 0.3, 0.4, 0.5, and

1 from bottom to top. Simulation results are open circles, � � results are open circles, � � 0; solid circles, � � 0.1; squares,
� � 1.0; solid circles, � � 0.3; squares, � � 1.
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Figure 8.—(A) Within-deme inbreeding depression (�IS) in a subdivided population under hard selection, relative to the
inbreeding depression in a nonsubdivided population of the same total size, as a function of the migration rate (x-axis) and the
selfing rate. Parameter values are: n � 100; N � 30; s � 0.01; u � 10�5; v � 10�6; h � 0; and � � 0, 0.1, 0.2, 0.3, 0.5, 0.7, and
1 from bottom to top. (B) Between-deme inbreeding depression (�IT) for the same parameter values, � � 0, 0.1, 0.2, 0.3, 0.5,
0.7, and 1 from bottom to top. Simulation results are open circles, � � 0; solid circles, � � 0.3; squares, � � 1.

not change the direction of the effect of population to take into account the fact that heterozygotes have
the highest fecundity (segregation load); in that casestructure on �IS and �ST: decreasing m always decreases

�IS, for all values of � between zero and one (Figure Whitlock (2002) found that population structure in-
creases the load.8A), and always increases �ST (not shown), as long as

0 
 h 
 1⁄2. For very high selfing rates, however, the The effects of the coefficient of selection against dele-
terious mutants (s) are illustrated by Figure 9. Althougheffect of population structure on �IS is very reduced and

disappears completely when � � 1, as shown by Figure mutants become less frequent as s increases, the greater
fitness difference between heterozygotes and mutant8A. The effect of population structure on �IT, however,

can change in direction depending on the selfing rate. homozygotes causes inbreeding depression to increase;
the effect of s on heterosis, however, is nonmonotonic,We have seen that without selfing, decreasing Nm de-

creases �IT when h � �1⁄4 (provided that Nm is not too a result already obtained by Whitlock et al. (2000).
Because our diffusion model does not give accuratesmall); Figure 8B shows that this effect is reversed when

� is sufficiently high. When h � 1⁄4, however, �IT always results when s � m [i.e., when log(s) � �2 in Figure
9], we could not observe this nonmonotonic effect fromincreases as Nm decreases, for all values of �.

Effects of h and s : Increasing the dominance coeffi- the model, but only from the simulations. The effect
of s on the mutation load is also nonmonotonic. As scient of deleterious mutations (h) always increases the

mutation load and decreases the average mutant fre- decreases, the average frequency of deleterious muta-
tions increases, but their effect on fitness decreases;quency, the within- and between-deme inbreeding de-

pression, and heterosis (results not shown). Indeed, in the deterministic regime, these two effects exactly
compensate each other, and the load does not dependselection is less effective against recessive mutations than

against dominant mutations, and the fitness difference on s. At low values of s, however, deterministic solutions
become less and less accurate, and the average fre-between heterozygotes and mutant homozygotes is

greatest for recessive mutations, which explains the ef- quency of mutants becomes higher than the determinis-
tic equilibrium, causing the load to increase. In the limitfects of h on p, �IS, �IT, and �ST. The effect of h on the

mutation load can be explained by the fact that recessive as s tends to zero, deleterious mutants have no effect
on fitness and the load equals zero. Figure 9 shows thatmutants are eliminated most often in the homozygous

state, while dominant mutants are eliminated most often the value of s that maximizes the load (�10�4 in Figure
9) is lower than the value of s that maximizes heterosisin the heterozygous state: therefore it takes fewer ge-

netic deaths to eliminate a given number of recessive (�10�2).
mutations than to eliminate the same number of domi-
nant mutations (e.g., Crow and Kimura 1970, p. 301).

DISCUSSION
Although in this article we restricted ourselves to the
case 0 
 h 
 1, the effects of underdominant (h � 0) In this article we expressed the mutation load, in-

breeding depression, and heterosis in an island modeland overdominant (h � 1) mutations can be addressed
by our model. We found similar qualitative results for of population structure as functions of the first moments

of the frequency distribution of a deleterious allele indominant and overdominant mutations, while the ef-
fects of population structure and selfing on the average the metapopulation. We then used a diffusion model to

calculate this distribution. Diffusion methods for islandfrequency, inbreeding depression, and heterosis due to
underdominant and recessive mutations are qualita- models of population structure use the fact that, as the

number of demes tends to infinity, the ancestral lineagestively similar. When h � 0, the load has to be redefined
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Figure 9.—Effects of the strength of selection against deleterious mutants (s) on the average mutant frequency (p), the
mutation load (L), within-deme inbreeding depression (�IS), and heterosis (�ST). The curves correspond to numerical integration
over the φ distribution (with hard selection), and the dots correspond to simulation results. Parameter values are n � 100, N �
100, h � 0.01, � � 0, m � 0.01, u � 10�5, and v � 10�6.

of different genes from the same deme either stay in heterosis that we could obtain. The diffusion method
also assumes a high number of demes and weak selec-the same deme and coalesce relatively fast or move to

a different deme and take a very long time to join again tion, but these hypotheses are in fact not very restrictive,
as long as s � m, as illustrated in Table 3 of Rozein a deme. This has been described by some authors as

a separation of timescales (Ethier and Nagylaki 1980; and Rousset (2003). When s � m, we found that the
solutions obtained by Glémin et al. (2003) are moreWakeley 2003). By neglecting the effect of selection

on the average coalescence time within demes, one can accurate than ours, if h is not small (indeed the method
used by Glémin et al. is not appropriate for small valuesthen use neutral probabilities of coalescence to obtain

expressions for the variance of allele frequencies among of h, since they assume that deleterious alleles are pres-
ent only in the heterozygous stage). This is illustrateddemes. This gives good results as long as selection is

small relative to allele frequency fluctuations within by Figure 10, which shows �IS calculated from Equations
3a, 8, and 10a from Glémin et al. (2003), from our modeldemes, i.e., approximately when s � m � 1/N (Roze

and Rousset 2003). Although the first moments of the after numerical integration over the φ distribution, and
from our approximation (37).probability distribution of the frequency of the deleteri-

ous allele have to be obtained by numerical integration, Whether the diffusion method can be used for other
models of population structure remains unclear. Whit-some approximations are possible, the simplest being

Equation 33, which also corresponds to the determinis- lock (2002) assumed that M�p has the same form in a
stepping-stone model as in the island model, but theretic equilibrium. We found that Equation 33 gives good

results as long as h � �0.3, or as h � 0.3 and the is no proof of this assumption (see Rousset 2002; Rous-
set 2004, p. 82). Aware of this problem, Maruyamamigration rate m is small. If one then assumes that m is

small and that deme size N is large, Equation 33 becomes (1983) derived diffusion approximations by noting that
M�p/V�p can be computed despite the exact form ofa simple expression that leads to Equations 35–39. These

are the simplest approximations for the mean mutant M�p being unknown (see also Rousset 2004, p. 151).
Maruyama’s argument holds for semidominant mutantsfrequency, mutation load, inbreeding depression, and
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Figure 10.—Within-deme inbreeding depression (�IS) in a subdivided population under hard selection, as a function of the
migration rate m. Solid curves, solution obtained from Equations 3a, 8, and 10a in Glémin et al. (2003); dashed curves, numerical
integration over the φ distribution; dotted curves, approximation (40) from this article; dots, simulation results. Parameter values
are n � 100, N � 100, s � 0.1, u � 10�5, v � 10�6, � � 0, (A) h � 0.3, and (B) h � 0.1.

but may not be easily extended to other cases, and we ing the effect of selection. The overall effect of popula-
tion subdivision depends on the relative importance ofmade no attempt in this direction. Although Whitlock’s

diffusion approximations may be reasonable for the pa- these two effects. When the selfing rate is low, the first
effect prevails when mutations are recessive (h � 0.2–rameter values he investigated (Whitlock 2003), a gen-

eral argument is missing and further investigations 0.3), which explains why the mutant frequency and the
mutation load decrease as Nm decreases (unless Nm iswould be required.

We obtained simple results about the effects of selfing: very small); with a moderate to high selfing rate, how-
ever, selfing becomes more efficient than populationthe average mutant frequency, within- and between-

deme inbreeding depression, and heterosis all decrease structure in increasing homozygosity, and the second
effect of population structure, which increases the fre-as the selfing rate increases; in most cases, the mutation

load also decreases as selfing increases, except when quency of deleterious mutants and the mutation load,
prevails.deleterious mutations are fully (or almost fully) reces-

sive and population structure is strong, in which cases Results about the effects of the selection coefficient
s show that weakly deleterious mutations have thethe load is minimized for an intermediate value of the

selfing rate. The effects of population structure are strongest effect on the mutation load, while heterosis
is maximum for moderately deleterious mutations, andmore complicated and depend on the rate of partial

selfing. Without selfing, moderate population structure inbreeding depression is maximum for strongly deleteri-
ous mutations (Figure 9). Whether heterosis, mutationdecreases the frequency of deleterious mutants, the mu-

tation load, and between-deme inbreeding depression load, and inbreeding depression are due mainly to
weakly, moderately, or strongly deleterious mutations(�IT) when deleterious mutations have a dominance co-

efficient � �0.2–0.3. This purging effect of population depends critically of course on the probability of occur-
rence of these different types of mutations, which atstructure is decreased by selfing and is reversed when

the selfing rate is sufficiently high. When the dominance present remains poorly known.
Although we assumed throughout the article that mi-coefficient of deleterious mutations is �0.2–0.3, popula-

tion structure always increases the mutant frequency, gration in the gametic phase was absent, it can be incor-
porated into the model easily. We modified the life cyclethe mutation load, and between-deme inbreeding de-

pression. Finally, when population structure is very considered in the present article to model a plant life
cycle; in this modified model, self-fertilization occursstrong, the mutant frequency, mutation load, and be-

tween-deme inbreeding depression always increase as first (a proportion � of the ovules of a plant being
fertilized by pollen produced by the same plant), thenpopulation structure increases, for all selfing rates and

dominance coefficients. The effects of population struc- pollen migrates at a rate mp, the 1 � � remaining ovules
are fertilized randomly by pollen present in the sameture on within-deme inbreeding depression and hetero-

sis are simpler: �IS always decreases, and �ST always in- deme, and finally seeds migrate at a rate ms. We found
that when mp and ms are small and N is large, the deter-creases, as the degree of population structure increases.

These results illustrate a double effect of population ministic solutions for the average mutant frequency, the
mutation load, inbreeding depression, and heterosis arestructure, already shown by Whitlock (2002) in models

without selfing: (i) population structure helps to purge still given by Equations 35–39, m being replaced by ms �
(1 � �)mp/2. When migration through seeds is very lowrecessive deleterious mutations by increasing the aver-

age homozygosity, but (ii) also increases the genetic or absent, and most migration occurs through pollen,
the selfing rate � has a nonmonotonic effect on p, L,similarity among competing individuals, thereby reduc-
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Applying the approximation above, we obtain
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We assumed that |�1| was large to obtain (B7). After
comparisons with numerical integrations, we found thatwhich gives for r0 and r1, (B7) is a good approximation as long as ns is of order
1 or higher. The fit is better as m decreases, because it

r0 �
1 � �m(2 � m)(N � 1)

1 � (2 � �)m(2 � m)(N � 1)
(A7) increases Ne.

Using AS 19.12.4, we obtain from (B7),
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The expressions of a and c are more complicated and
not given here for space reasons, but are available by where U(., .) is Whittaker’s parabolic cylinder function.
request to the authors. If √��2

1/(2�2) � � � 1⁄2, we can use AS 19.8.1, giving
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APPENDIX B

if we keep only the first term of AS 19.8.1, andWe seek convenient approximations for integrals of
the form

p � �
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if we add the second term.
There is no simple approximation for all conceivable If � � 1⁄2 � √��2

1/(2�2), AS 19.9.1 gives
ranges of parameter values, but a useful approximation
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of magnitude of √��2
1/(2�2) depends critically on h and(B3)

m. √��2
1/(2�2) increases with h, and when h � 0.3,

from Equation 13.2.1 in Abramowitz and Stegun assuming that the mutation rate is not too large
(1972; refered to hereafter as AS), where M(., ., .) is (�10�4), √��2

1/(2�2) is large enough for approximation
Kummer’s confluent hypergeometric function (AS (B9) to give good results. When h � �0.3, approxima-
13.1.2). From this, assuming that |�1| is large gives by tion (B9) can still be used when m is small enough,
AS 13.1.5, because √��2

1/(2�2) increases faster than � as m de-
creases; (B10) can be used for larger values of m than
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�(� � 2l)(��1 )���2l (B4) (B9). When h is very small (equal or close to zero), (B9)

and (B10) work only for small values of m, while (B11)
gives good results when m is not small. (B11) does not�
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work well, however, when h is not very small.
(B5) The mean of pq over φ is given by

where U(., ., .) is the other Kummer function (AS �(�1 , �2 , � � 1, � � 1)/�(�1 , �2 , �, �). (B13)
13.1.3).

Using the same approximation as in (B4), one findsThe mean allele frequency is
that pq is also approximately equal to (B7); therefore
the same approximations can be used for p and pq.�(�1 , �2 , � � 1, �)/�(�1 , �2 , �, �) (B6)




